The impact of ribosomal interference, codon usage, and exit tunnel interactions on translation elongation rate variation
نویسندگان
چکیده
Previous studies have shown that translation elongation is regulated by multiple factors, but the observed heterogeneity remains only partially explained. To dissect quantitatively the different determinants of elongation speed, we use probabilistic modeling to estimate initiation and local elongation rates from ribosome profiling data. This model-based approach allows us to quantify the extent of interference between ribosomes on the same transcript. We show that neither interference nor the distribution of slow codons is sufficient to explain the observed heterogeneity. Instead, we find that electrostatic interactions between the ribosomal exit tunnel and specific parts of the nascent polypeptide govern the elongation rate variation as the polypeptide makes its initial pass through the tunnel. Once the N-terminus has escaped the tunnel, the hydropathy of the nascent polypeptide within the ribosome plays a major role in modulating the speed. We show that our results are consistent with the biophysical properties of the tunnel.
منابع مشابه
Identification and quantitative analysis of the major determinants of translation elongation rate variation
Ribosome profiling provides a detailed view into the complex dynamics of translation. Although the precise relation between the observed ribosome footprint densities and the actual translation elongation rates remains elusive, the data clearly suggest that elongation speed is quite heterogeneous along the transcript. Previous studies have shown that elongation is locally regulated by multiple f...
متن کاملDeciphering the rules by which dynamics of mRNA secondary structure affect translation efficiency in Saccharomyces cerevisiae
Messenger RNA (mRNA) secondary structure decreases the elongation rate, as ribosomes must unwind every structure they encounter during translation. Therefore, the strength of mRNA secondary structure is assumed to be reduced in highly translated mRNAs. However, previous studies in vitro reported a positive correlation between mRNA folding strength and protein abundance. The counterintuitive fin...
متن کاملS-Adenosyl-l-methionine Induces Compaction of Nascent Peptide Chain inside the Ribosomal Exit Tunnel upon Translation Arrest in the Arabidopsis CGS1 Gene*♦
Expression of the Arabidopsis CGS1 gene, encoding the first committed enzyme of methionine biosynthesis, is feedback-regulated in response to S-adenosyl-L-methionine (AdoMet) at the mRNA level. This regulation is first preceded by temporal arrest of CGS1 translation elongation at the Ser-94 codon. AdoMet is specifically required for this translation arrest, although the mechanism by which AdoMe...
متن کاملA Major Controversy in Codon-Anticodon Adaptation Resolved by a New Codon Usage Index
Two alternative hypotheses attribute different benefits to codon-anticodon adaptation. The first assumes that protein production is rate limited by both initiation and elongation and that codon-anticodon adaptation would result in higher elongation efficiency and more efficient and accurate protein production, especially for highly expressed genes. The second claims that protein production is r...
متن کاملCritical 23S rRNA interactions for macrolide-dependent ribosome stalling on the ErmCL nascent peptide chain
The nascent peptide exit tunnel has recently been identified as a functional region of ribosomes contributing to translation regulation and co-translational protein folding. Inducible expression of the erm resistance genes depends on ribosome stalling at specific codons of an upstream open reading frame in the presence of an exit tunnel-bound macrolide antibiotic. The molecular basis for this t...
متن کامل